Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation.
نویسندگان
چکیده
Adiponectin is secreted from adipocytes, and low circulating levels have been epidemiologically associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. To investigate whether adiponectin could exert autocrine effects in adipocytes, we expressed the adiponectin gene in 3T3-L1 fibroblasts. We observed that 3T3-L1 fibroblasts expressing adiponectin have a fast growth phase and reach confluence more rapidly compared with control cells or LacZ-transduced cells. Furthermore, cells with overexpressed adiponectin were observed to differentiate into adipocytes more rapidly, and during adipogenesis, they exhibited more prolonged and robust gene expression for related transcriptional factors, CCAAT/enhancer binding protein alpha (C/EBP2), peroxisome proliferator-activated receptor gamma (PPARgamma), and adipocyte determination and differentiation factor 1/sterol-regulatory element binding protein 1c (ADD1/SREBP1c) and earlier suppression of PPARgamma coactivator-1alpha (PGC-1alpha). In fully differentiated adipocytes, adiponectin-overexpressing cells accumulated more and larger lipid droplets compared with control cells. Also, adiponectin increased insulin's ability to maximally stimulate glucose uptake by 78% through increased glucose transporter 4 (GLUT4) gene expression and increased GLUT4 recruitment to the plasma membrane. These data suggest a new role for adiponectin as an autocrine factor in adipose tissues: promoting cell proliferation and differentiation from preadipocytes into adipocytes, augmenting programmed gene expression responsible for adipogenesis, and increasing lipid content and insulin responsiveness of the glucose transport system in adipocytes.
منابع مشابه
Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes
Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differenti...
متن کاملArtemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo
BACKGROUND Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO tr...
متن کاملABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity.
Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostas...
متن کاملInducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis
OBJECTIVE Adiponectin and the signaling induced by its cognate receptors, AdipoR1 and AdipoR2, have garnered attention for their ability to promote insulin sensitivity and oppose steatosis. Activation of these receptors promotes the deacylation of ceramide, a lipid metabolite that appears to play a causal role in impairing insulin signaling. METHODS Here, we have developed transgenic mice tha...
متن کاملControl of Adipocyte Differentiation in Different Fat Depots; Implications for Pathophysiology or Therapy
Adipocyte differentiation and its impact on restriction or expansion of particular adipose tissue depots have physiological and pathophysiological significance in view of the different functions of these depots. Brown or "beige" fat [brown adipose tissue (BAT)] expansion can enhance thermogenesis, lipid oxidation, insulin sensitivity, and glucose tolerance; conversely expanded visceral fat [vis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 46 7 شماره
صفحات -
تاریخ انتشار 2005